গ্যালওয়া'র আবিষ্কার নিয়ে যে খটোমটো কথা গুলি বলতে চেয়েছিলাম সেগুলো বলে নেই। এখানে আমি একটু অপরাধ করব। সেটা হল, আমি ধরে নেব, গ্রুপ থিওরী'র একদম প্রাথমিক ব্যাপার গুলো আমার অডিয়েন্সের জানা। আমি ধরে নেব, গ্রুপ, সাবগ্রুপ, অ্যাবেলিয়ান গ্রুপ, কোসেট, ফ্যাক্টর গ্রুপ, পারম্যুটেশন গ্রুপ, ইনভ্যারিয়্যান্ট সাবগ্রুপ - এই জিনিসগুলো নিয়ে আমার অডিয়েন্সের কিছুটা ধারণা আছে। এখন প্রশ্ন হল, গ্যালওয়া কোন ইনফর্মেশন থেকে বুঝতেন যে অ্যালজেব্রাইক ইকুয়েশনটা সল্ভ করা যাবে কিনা। আপাতত ইকুয়েশন বলতে অ্যালজেব্রাইক ইকুয়েশনই বুঝাচ্ছি। মানে
a0xn+a1xn−1+…+an−1x+an=0
-এই ধরনের আরকি। x রিয়াল নাম্বার, কমপ্লেক্স নাম্বার দুটোই হতে পারে।
গ্যালওয়া বললেন, এরকম প্রতিটা ইকুয়েশনের কারেস্পন্ডেন্সে একটা ফাইনাইট গ্রুপ থাকবে। সেটা হবে ওই ইকুয়েশনের ডিগ্রীর সমান অর্ডারের পারম্যুটেশন গ্রুপ। যেমন,
x2+6x+5=0
এই ইকুয়েশনের ডিগ্রী 2 (কঠিন বাংলায় যাকে বলে দ্বিঘাত সমীকরণ)। তাই এর কারেস্পন্ডিং ফাইনাইট গ্রুপ হবে S2, অর্থাৎ, 2 অর্ডারের পারম্যুটেশন গ্রুপ। ইকুয়েশনটা যদি কিউবিক হয়, অর্থাৎ এর ডিগ্রী যদি হয় 3, তাহলে গ্রুপ হবে S3. বিভিন্ন ক্ষেত্রে এই Sn এর স্ট্রাকচার দেখে বোঝা যাবে যে ইকুয়েশনটা সল্ভ করা যাবে কিনা।
স্ট্রাকচারটা তাহলে কী?
স্ট্রাকচারটা হল ওই Sn এর সাবগ্রুপ চেইন। বুঝিয়ে দাওয়ার চেষ্টা করছি। ধরাযাক, ওই Sn এর ভেতর বেশ কিছু সাবগ্রুপ পাওয়া গেলঃ G0,G1,G2,G3,…,Gn−1,Gn. এবং এটাও ধরে নিচ্ছি যে, G0 হল গ্রুপের (Sn এর) আইডেন্টিটি ইলিমেন্ট, আর Gn হল স্বয়ং Sn. এখন, এই সাবগ্রুপ গুলোর মধ্যে যদি এমন একটা চেইন থাকে যাতেঃ
G0⊂G1⊂G2⊂G3⊂…,Gn−1⊂Gn
হয়, এবং যদি প্রতিটা Gn−1 হয় Gn এর ইনভ্যারিয়্যান্ট সাবগ্রুপ, এবং (এটাই শেষ শর্ত), Gn/Gn−1 ফ্যাক্টর গ্রুপ গুলোর প্রতিটিই যদি হয় অ্যাবেলিয়ান, তাহলেই কেবল একটা ইকুয়েশনকে তার ডিগ্রীর বর্গমুলের সাহায্যে ডিরেক্টলি সল্ভ করা সম্ভব।
আমি এই ভয়ঙ্করদর্শন থিওরেমের কাঠিন্য দেখে অবাক হচ্ছিনা। আমি অবাক হচ্ছি এটা ভেবে, যে গ্যালওয়া এটি আবিষ্কার করেছিলেন ১৮২৯ এর দিকে। কত বয়স ছিল তাঁর তখন? বড়জোড় ১৮! আমার মাথার উপর পারমানবিক বোমা ফেললেও এই তত্ত্ব বেরুতনা। এই লেখায় আমি আর ডিটেইলে যাচ্ছিনা। কিভাবে ইকুয়েশন গুলোকে সল্ভ করা হয়, সেটা নিয়ে না হয় আরেকদিন বসব। এখন অন্য কথা ভাবছি।
গ্যালওয়া যখন তাঁর পেপার লিখে জার্নালে জমা দিয়েছিলেন, তখন সেটা ছাপা হয়নি। কেন হয়নি, কেউ বলতে পারেনা। হয়ত রেফারী ভেবেছিলেন, এটা কিছুই হয়নি, অথবা কর্তৃপক্ষ ভেবেছিল, পরে ছাপাব, অথবা পেপার গুলো হারিয়ে গিয়েছিল, বা কোন মহান গণিতজ্ঞের বুকশেলফের নিচে গড়াগড়ি খাচ্ছিল, কে জানে কি হয়েছিল। এরপর গ্যালওয়াও বেশি দিন বাঁচেননি। ১৮৩২ সালে একটা ডুয়েলে তিনি মারা যান। অনেকে বলে, প্রেমের কারনে।
এই অসামান্য প্রতিভাধর কিশোরের সব গবেষনাই হয়ত মানুষ ভুলে যেত, যদি ১৮৪০ এর দিকে কশি কাজ গুলো নিয়ে না ভাবতেন।
বিভিন্ন কনফারেন্সে, জার্নালে যখন পেপার দেই, এবং যখন ওগুলো রিজেক্টেড হয়, তখন মাঝেমধ্যে ভালই লাগে। নিজের ভেতর খানিক গ্যালওয়া-গ্যালওয়া অনুভুতি হয়। এরচে' বেশি কিছু হয়না অবশ্য। নিজের জ্ঞানের পুরুত্ব তো জানি..
a0xn+a1xn−1+…+an−1x+an=0
-এই ধরনের আরকি। x রিয়াল নাম্বার, কমপ্লেক্স নাম্বার দুটোই হতে পারে।
গ্যালওয়া বললেন, এরকম প্রতিটা ইকুয়েশনের কারেস্পন্ডেন্সে একটা ফাইনাইট গ্রুপ থাকবে। সেটা হবে ওই ইকুয়েশনের ডিগ্রীর সমান অর্ডারের পারম্যুটেশন গ্রুপ। যেমন,
x2+6x+5=0
এই ইকুয়েশনের ডিগ্রী 2 (কঠিন বাংলায় যাকে বলে দ্বিঘাত সমীকরণ)। তাই এর কারেস্পন্ডিং ফাইনাইট গ্রুপ হবে S2, অর্থাৎ, 2 অর্ডারের পারম্যুটেশন গ্রুপ। ইকুয়েশনটা যদি কিউবিক হয়, অর্থাৎ এর ডিগ্রী যদি হয় 3, তাহলে গ্রুপ হবে S3. বিভিন্ন ক্ষেত্রে এই Sn এর স্ট্রাকচার দেখে বোঝা যাবে যে ইকুয়েশনটা সল্ভ করা যাবে কিনা।
স্ট্রাকচারটা তাহলে কী?
স্ট্রাকচারটা হল ওই Sn এর সাবগ্রুপ চেইন। বুঝিয়ে দাওয়ার চেষ্টা করছি। ধরাযাক, ওই Sn এর ভেতর বেশ কিছু সাবগ্রুপ পাওয়া গেলঃ G0,G1,G2,G3,…,Gn−1,Gn. এবং এটাও ধরে নিচ্ছি যে, G0 হল গ্রুপের (Sn এর) আইডেন্টিটি ইলিমেন্ট, আর Gn হল স্বয়ং Sn. এখন, এই সাবগ্রুপ গুলোর মধ্যে যদি এমন একটা চেইন থাকে যাতেঃ
G0⊂G1⊂G2⊂G3⊂…,Gn−1⊂Gn
হয়, এবং যদি প্রতিটা Gn−1 হয় Gn এর ইনভ্যারিয়্যান্ট সাবগ্রুপ, এবং (এটাই শেষ শর্ত), Gn/Gn−1 ফ্যাক্টর গ্রুপ গুলোর প্রতিটিই যদি হয় অ্যাবেলিয়ান, তাহলেই কেবল একটা ইকুয়েশনকে তার ডিগ্রীর বর্গমুলের সাহায্যে ডিরেক্টলি সল্ভ করা সম্ভব।
আমি এই ভয়ঙ্করদর্শন থিওরেমের কাঠিন্য দেখে অবাক হচ্ছিনা। আমি অবাক হচ্ছি এটা ভেবে, যে গ্যালওয়া এটি আবিষ্কার করেছিলেন ১৮২৯ এর দিকে। কত বয়স ছিল তাঁর তখন? বড়জোড় ১৮! আমার মাথার উপর পারমানবিক বোমা ফেললেও এই তত্ত্ব বেরুতনা। এই লেখায় আমি আর ডিটেইলে যাচ্ছিনা। কিভাবে ইকুয়েশন গুলোকে সল্ভ করা হয়, সেটা নিয়ে না হয় আরেকদিন বসব। এখন অন্য কথা ভাবছি।
গ্যালওয়া যখন তাঁর পেপার লিখে জার্নালে জমা দিয়েছিলেন, তখন সেটা ছাপা হয়নি। কেন হয়নি, কেউ বলতে পারেনা। হয়ত রেফারী ভেবেছিলেন, এটা কিছুই হয়নি, অথবা কর্তৃপক্ষ ভেবেছিল, পরে ছাপাব, অথবা পেপার গুলো হারিয়ে গিয়েছিল, বা কোন মহান গণিতজ্ঞের বুকশেলফের নিচে গড়াগড়ি খাচ্ছিল, কে জানে কি হয়েছিল। এরপর গ্যালওয়াও বেশি দিন বাঁচেননি। ১৮৩২ সালে একটা ডুয়েলে তিনি মারা যান। অনেকে বলে, প্রেমের কারনে।
এই অসামান্য প্রতিভাধর কিশোরের সব গবেষনাই হয়ত মানুষ ভুলে যেত, যদি ১৮৪০ এর দিকে কশি কাজ গুলো নিয়ে না ভাবতেন।
বিভিন্ন কনফারেন্সে, জার্নালে যখন পেপার দেই, এবং যখন ওগুলো রিজেক্টেড হয়, তখন মাঝেমধ্যে ভালই লাগে। নিজের ভেতর খানিক গ্যালওয়া-গ্যালওয়া অনুভুতি হয়। এরচে' বেশি কিছু হয়না অবশ্য। নিজের জ্ঞানের পুরুত্ব তো জানি..